MATH SOLVE

2 months ago

Q:
# The measurement of the circumference of a circle is found to be 68 centimeters, with a possible error of 0.9 centimeter. (a) Approximate the percent error in computing the area of the circle. (Round your answer to two decimal places

Accepted Solution

A:

Answer: 2.65%Step-by-step explanation:Given : The measurement of the circumference of a circle = 68 centimetersPossible error : [tex]dC=0.9[/tex] centimeter. The formula to find the circumference :-[tex]C=2\pi r\\\\\Rightarrow\ r=\dfrac{C}{2\pi}\\\\\Rightarrow\ r=\dfrac{68}{2\pi}=\dfrac{34}{\pi}[/tex]Differentiate the formula of circumference w.r.t. r , we get[tex]dC=2\pi dr\\\\\Rightarrow\ dr=\dfrac{dC}{2\pi}=\dfrac{0.9}{2\pi}=\dfrac{0.45}{\pi}[/tex]The area of a circle :-[tex]A=\pi r^2=\pi(\frac{34}{\pi})^2=\dfrac{1156}{\pi}[/tex]Differentiate both sides w.r.t r, we get[tex]dA=\pi(2r)dr\\\\=\pi(2\times\frac{34}{\pi})(\frac{0.45}{\pi})\\\\=\dfrac{30.6}{\pi}[/tex]The percent error in computing the area of the circle is given by :-[tex]\dfrac{dA}{A}\times100\\\\\dfrac{\dfrac{30.6}{\pi}}{\dfrac{1156}{\pi}}\times100\\\\=2.64705882353\%\approx 2.65\%[/tex]